$$
\begin{aligned}
& \text { r~Nir }
\end{aligned}
$$

Try all questions

Q1

A-Define the Matlab as a sofiware programming language and what is the difference between it and other languages, use examples as much as you can?
$B-W h a t ~ i t ~ m e a n s ~ m-f i l e s ? ~ ? ~$
C- The following figure is the environment of the matlab, explain every part of it $(1,2,3,4)$?

Q2

Given the following complex matrices A and B using Matlab to write a matlab code that performs the operations indicated as follows and print all the results?

$$
\begin{gathered}
A=\left[\begin{array}{cc}
{\left[3 e^{(j z / 3)}\right]} & 6 \cos \left(\frac{\pi}{6}\right)+i 6 \sin \left(\frac{\pi}{6}\right) \\
3+4 i & 4.23 e^{(-i \pi / 18)}+9
\end{array}\right] \\
B=\left[\begin{array}{cc}
5-9 j & 5 e^{(j(x / 3+n / 5)} \\
(2-3 j)^{3.3} & \log (6-8 j)
\end{array}\right]
\end{gathered}
$$

$C=\operatorname{det}(A)$	$D=\cdot$	$F=A \cdot{ }^{\wedge} B$	$E=A^{\wedge} 2$
$G=A^{\prime}$	$H=A!^{\prime}$	$I=[A B]$	$J=[A ; B]$
$K=I(1,:)$	$L=J(:, 1)$	$M=\operatorname{eig}(A)$	

Q3

"Kirchhoff's current law states that for any electrical circuit, the algebraic sum

of all the currents at any node in the circuit equals zero." Based on that statement explain an algorithm which could be used to determine the currents in a n electric circuit.
A- Explain and analysis the algorithm.
B- B-Write pseudo code and draw the flowchart.
C- C-Write Matlab code to implement that algorithm on the following circuit.

Qu
Repeat the same as in question 3 but use the admittance matrix algorithm?

05

Use the following circuit and repeat as in problem 3 to find all branches currents (use mesh current analysis method)

